架构 - 高并发之服务降级与服务熔断
架构 - 高并发之服务降级与服务熔断
降级与熔断话题
伴随着微服务架构被宣传得如火如荼,一些概念也被推到了我们面前(管你接受不接受),其实大多数概念以前就有,但很少被提的这么频繁(现在好像不提及都不好意思交流了)。想起有人总结的一句话,微服务架构的特点就是:“一解释就懂,一问就不知,一讨论就吵架”。
其实对老外的总结能力一直特别崇拜,Kevin Kelly、Martin Fowler、Werner Vogels……,都是著名的“演讲家”。正好这段时间看了些微服务、容器的相关资料,也在我们新一代产品中进行了部分实践,回过头来,再来谈谈对一些概念的理解。
今天先来说说“服务熔断”和“服务降级”。为什么要说这个呢,因为我很长时间里都把这两个概念同质化了,不知道这两个词大家怎么理解,一个意思or有所不同?现在的我是这么来看的:
- 在股票市场,熔断这个词大家都不陌生,是指当股指波幅达到某个点后,交易所为控制风险采取的暂停交易措施。相应的,服务熔断一般是指软件系统中,由于某些原因使得服务出现了过载现象,为防止造成整个系统故障,从而采用的一种保护措施,所以很多地方把熔断亦称为过载保护。
- 大家都见过女生旅行吧,大号的旅行箱是必备物,平常走走近处绰绰有余,但一旦出个远门,再大的箱子都白搭了,怎么办呢?常见的情景就是把物品拿出来分分堆,比了又比,最后一些非必需品的就忍痛放下了,等到下次箱子够用了,再带上用一用。而服务降级,就是这么回事,整体资源快不够了,忍痛将某些服务先关掉,待渡过难关,再开启回来。
所以从上述分析来看,两者其实从有些角度看是有一定的类似性的:
- 目的很一致,都是从可用性可靠性着想,为防止系统的整体缓慢甚至崩溃,采用的技术手段;
- 最终表现类似,对于两者来说,最终让用户体验到的是某些功能暂时不可达或不可用;
- 粒度一般都是服务级别,当然,业界也有不少更细粒度的做法,比如做到数据持久层(允许查询,不允许增删改);
- 自治性要求很高,熔断模式一般都是服务基于策略的自动触发,降级虽说可人工干预,但在微服务架构下,完全靠人显然不可能,开关预置、配置中心都是必要手段;
而两者的区别也是明显的:
- 触发原因不太一样,服务熔断一般是某个服务(下游服务)故障引起,而服务降级一般是从整体负荷考虑;
- 管理目标的层次不太一样,熔断其实是一个框架级的处理,每个微服务都需要(无层级之分),而降级一般需要对业务有层级之分(比如降级一般是从最外围服务开始)
- 实现方式不太一样,这个区别后面会单独来说;
当然这只是我个人对两者的理解,外面把两者归为完全一致的也不在少数,或者把熔断机制理解为应对降级目标的一种实现也说的过去,可能“一讨论就吵架”也正是这个原因吧!
概念算是说完了,避免空谈,我再总结下对常用的实现方法的理解。对于这两个概念,号称支持的框架可不少,Hystrix当属其中的佼佼者。
服务降级
由于爆炸性的流量冲击,对一些服务进行有策略的放弃,以此缓解系统压力,保证目前主要业务的正常运行。它主要是针对非正常情况下的应急服务措施:当此时一些业务服务无法执行时,给出一个统一的返回结果。
降级特征
- 原因:整体负荷超出整体负载承受能力。
- 目的:保证重要或基本服务正常运行,非重要服务延迟使用或暂停使用
- 大小:降低服务粒度,要考虑整体模块粒度的大小,将粒度控制在合适的范围内
- 可控性:在服务粒度大小的基础上增加服务的可控性,后台服务开关的功能是一项必要配置(单机可配置文件,其他可领用数据库和缓存),可分为手动控制和自动控制。
- 次序:一般从外围延伸服务开始降级,需要有一定的配置项,重要性低的优先降级,比如可以分组设置等级1-10,当服务需要降级到某一个级别时,进行相关配置
降级方式
- 延迟服务:比如发表了评论,重要服务,比如在文章中显示正常,但是延迟给用户增加积分,只是放到一个缓存中,等服务平稳之后再执行。
- 在粒度范围内关闭服务(片段降级或服务功能降级):比如关闭相关文章的推荐,直接关闭推荐区
- 页面异步请求降级:比如商品详情页上有推荐信息/配送至等异步加载的请求,如果这些信息响应慢或者后端服务有问题,可以进行降级;
- 页面跳转(页面降级):比如可以有相关文章推荐,但是更多的页面则直接跳转到某一个地址
- 写降级:比如秒杀抢购,我们可以只进行Cache的更新,然后异步同步扣减库存到DB,保证最终一致性即可,此时可以将DB降级为Cache。
- 读降级:比如多级缓存模式,如果后端服务有问题,可以降级为只读缓存,这种方式适用于对读一致性要求不高的场景。
降级预案
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
- 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
- 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
- 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
- 严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
降级分类
- 降级按照是否自动化可分为:自动开关降级(超时、失败次数、故障、限流)和人工开关降级(秒杀、电商大促等)。
- 降级按照功能可分为:读服务降级、写服务降级。
- 降级按照处于的系统层次可分为:多级降级。
自动降级分类
- 超时降级:主要配置好超时时间和超时重试次数和机制,并使用异步机制探测回复情况
- 失败次数降级:主要是一些不稳定的api,当失败调用次数达到一定阀值自动降级,同样要使用异步机制探测回复情况
- 故障降级:比如要调用的远程服务挂掉了(网络故障、DNS故障、http服务返回错误的状态码、rpc服务抛出异常),则可以直接降级。降级后的处理方案有:默认值(比如库存服务挂了,返回默认现货)、兜底数据(比如广告挂了,返回提前准备好的一些静态页面)、缓存(之前暂存的一些缓存数据)
- 限流降级 当我们去秒杀或者抢购一些限购商品时,此时可能会因为访问量太大而导致系统崩溃,此时开发者会使用限流来进行限制访问量,当达到限流阀值,后续请求会被降级;降级后的处理方案可以是:排队页面(将用户导流到排队页面等一会重试)、无货(直接告知用户没货了)、错误页(如活动太火爆了,稍后重试)
- 服务降级需考虑的问题
- 核心服务或非核心服务。
- 是否支持降级,及其降级策略。
- 业务放通场景,极其策略。
服务熔断
服务熔断也被称为服务过载保护。
服务熔断流程
如下图所示:
其实可以认为:服务熔断是服务降级的措施。
熔断与服务降级比较
- 服务熔断对服务提供了proxy,防止服务不可能时,出现串联故障(cascading failure),导致雪崩效应。
- 服务熔断一般是某个服务(下游服务)故障引起,而服务降级一般是从整体负荷考虑。
共性:
- 目的 -> 都是从可用性、可靠性出发,提高系统的容错能力。
- 最终表现->使某一些应用不可达或不可用,来保证整体系统稳定。
- 粒度 -> 一般都是服务级别,但也有细粒度的层面:如做到数据持久层、只许查询不许增删改等。
- 自治 -> 对其自治性要求很高。都要求具有较高的自动处理机制。
区别:
- 触发原因 -> 服务熔断通常是下级服务故障引起;服务降级通常为整体系统而考虑。
- 管理目标 -> 熔断是每个微服务都需要的,是一个框架级的处理;而服务降级一般是关注业务,对业务进行考虑,抓住业务的层级,从而决定在哪一层上进行处理:比如在IO层,业务逻辑层,还是在外围进行处理。
- 实现方式 -> 代码实现中的差异。
服务熔断中需考虑的设计
源自博主张善友的观点:
- 异常处理:调用受熔断器保护的服务的时候,我们必须要处理当服务不可用时的异常情况。这些异常处理通常需要视具体的业务情况而定。比如,如果应用程序只是暂时的功能降级,可能需要切换到其它的可替换的服务上来执行相同的任务或者获取相同的数据,或者给用户报告错误然后提示他们稍后重试。
- 异常的类型:请求失败的原因可能有很多种。一些原因可能会比其它原因更严重。比如,请求会失败可能是由于远程的服务崩溃,这可能需要花费数分钟来恢复;也可能是由于服务器暂时负载过重导致超时。熔断器应该能够检查错误的类型,从而根据具体的错误情况来调整策略。比如,可能需要很多次超时异常才可以断定需要切换到断开状态,而只需要几次错误提示就可以判断服务不可用而快速切换到断开状态。
- 日志:熔断器应该能够记录所有失败的请求,以及一些可能会尝试成功的请求,使得的管理员能够监控使用熔断器保护的服务的执行情况。
- 测试服务是否可用:在断开状态下,熔断器可以采用定期的ping远程的服务或者资源,来判断是否服务是否恢复,而不是使用计时器来自动切换到半断开状态。这种ping操作可以模拟之前那些失败的请求,或者可以使用通过调用远程服务提供的检查服务是否可用的方法来判断。
- 手动重置:在系统中对于失败操作的恢复时间是很难确定的,提供一个手动重置功能能够使得管理员可以手动的强制将熔断器切换到闭合状态。同样的,如果受熔断器保护的服务暂时不可用的话,管理员能够强制的将熔断器设置为断开状态。
- 并发问题:相同的熔断器有可能被大量并发请求同时访问。熔断器的实现不应该阻塞并发的请求或者增加每次请求调用的负担。
- 资源的差异性:使用单个熔断器时,一个资源如果有分布在多个地方就需要小心。比如,一个数据可能存储在多个磁盘分区上(shard),某个分区可以正常访问,而另一个可能存在暂时性的问题。在这种情况下,不同的错误响应如果混为一谈,那么应用程序访问的这些存在问题的分区的失败的可能性就会高,而那些被认为是正常的分区,就有可能被阻塞。
- 加快熔断器的熔断操作:有时候,服务返回的错误信息足够让熔断器立即执行熔断操作并且保持一段时间。比如,如果从一个分布式资源返回的响应提示负载超重,那么应该等待几分钟后再重试。(HTTP协议定义了”HTTP 503 Service Unavailable”来表示请求的服务当前不可用,他可以包含其他信息比如,超时等)
- 重复失败请求:当熔断器在断开状态的时候,熔断器可以记录每一次请求的细节,而不是仅仅返回失败信息,这样当远程服务恢复的时候,可以将这些失败的请求再重新请求一次。
服务熔断恢复需注意的问题
如果服务是幂等性的,则恢复重试不会有问题;而如果服务是非幂等性的,则重试会导致数据出现问题。
熔断器设计思路
先说说最裸的熔断器的设计思路,下面这张图大家应该不陌生(我只是参考着又画了画),简明扼要的给出了好的熔断器实现的三个状态机:
- Closed: 熔断器关闭状态,调用失败次数积累,到了阈值(或一定比例)则启动熔断机制;
- Open: 熔断器打开状态,此时对下游的调用都内部直接返回错误,不走网络,但设计了一个时钟选项,默认的时钟达到了一定时间(这个时间一般设置成平均故障处理时间,也就是MTTR),到了这个时间,进入半熔断状态;
- Half-Open: 半熔断状态,允许定量的服务请求,如果调用都成功(或一定比例)则认为恢复了,关闭熔断器,否则认为还没好,又回到熔断器打开状态;
那Hystrix,作为Netflix开源框架中的最受喜爱组件之一,是怎么处理依赖隔离,实现熔断机制的呢,他的处理远比我上面说个实现机制复杂的多。
一起来看看核心代码吧,我只保留了代码片段的关键部分:
public abstract class HystrixCommand<R> extends AbstractCommand<R> implements HystrixExecutable<R>, HystrixInvokableInfo<R>, HystrixObservable<R> {
protected abstract R run() throws Exception;
protected R getFallback() {
throw new UnsupportedOperationException("No fallback available.");
}
@Override
final protected Observable<R> getExecutionObservable() {
return Observable.defer(new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
try {
return Observable.just(run());
} catch (Throwable ex) {
return Observable.error(ex);
}
}
});
}
@Override
final protected Observable<R> getFallbackObservable() {
return Observable.defer(new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
try {
return Observable.just(getFallback());
} catch (Throwable ex) {
return Observable.error(ex);
}
}
});
}
public R execute() {
try {
return queue().get();
} catch (Exception e) {
throw decomposeException(e);
}
}
HystrixCommand是重重之重,在Hystrix的整个机制中,涉及到依赖边界的地方,都是通过这个Command模式进行调用的,显然,这个Command负责了核心的服务熔断和降级的处理,子类要实现的方法主要有两个:
- run方法: 实现依赖的逻辑,或者说是实现微服务之间的调用;
- getFallBack方法: 实现服务降级处理逻辑,只做熔断处理的则可不实现;
使用时,可参考如下方式:
public class TestCommand extends HystrixCommand<String> {
protected TestCommand(HystrixCommandGroupKey group) {
super(group);
}
@Override
protected String run() throws Exception {
//这里需要做实际调用逻辑
return "Hello";
}
public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {
TestCommand command = new TestCommand(HystrixCommandGroupKey.Factory.asKey("TestGroup"));
//1.这个是同步调用
command.execute();
//2.这个是异步调用
command.queue().get(500, TimeUnit.MILLISECONDS);
//3.异步回调
command.observe().subscribe(new Action1<String>() {
public void call(String arg0) {
}
});
}
}
细心的同学肯定发现Command机制里大量使用了Observable相关的API,这个是什么呢?原来其隶属于RxJava,这个框架就不多介绍了 --- 响应式开发,也是Netflix的作品之一。
接着呢,大家一定会问,那之前说的熔断阈值设置等,都在哪块做的呢?再来看看另一块核心代码:
public abstract class HystrixPropertiesStrategy {
public HystrixCommandProperties getCommandProperties(HystrixCommandKey commandKey, HystrixCommandProperties.Setter builder) {
return new HystrixPropertiesCommandDefault(commandKey, builder);
}
......
}
这个类作为策略类,返回相关的属性配置,大家可重新实现。而在具体的策略中,主要包括以下几种策略属性配置:
- circuitBreakerEnabled:是否允许熔断,默认允许;
- circuitBreakerRequestVolumeThreshold:熔断器是否开启的阀值,也就是说单位时间超过了阀值请求数,熔断器才开;
- circuitBreakerSleepWindowInMilliseconds:熔断器默认工作时间,超过此时间会进入半开状态,即允许流量做尝试;
- circuitBreakerErrorThresholdPercentage:错误比例触发熔断;
- ......
属性很多,这里就不一一说明了,大家可参考HystrixCommandProperties类里的详细定义。还有一点要着重说明的,在熔断器的设计里,隔离采用了线程的方式(据说还有信号的方式,这两个区别我还没搞太明白),处理依赖并发和阻塞扩展,示意图如下:
如上图,好处也很明显,对于每个依赖都有独立可控的线程池,当然高并发时,CPU切换较多,有一定的影响。
方案:Sentinel简介
Sentinel是什么?
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
Sentinel特征
- 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
- 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
- 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
- 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
Sentinel 的主要特性:
Sentinel开源生态
Sentinel 分为两个部分:
- 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。
- 控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的 Tomcat 等应用容器。
方案:Hystrix简介
Hystrix流程
服务降级通常可以通过使用该组建完成。
- 在通过第三方客户端访问(通常通过网络)依赖服务出现高延迟或失败时,为系统提供保护和控制。
- 在分布式系统中防止级联失败。
- 快速失败(Fail-fast)同时能快速恢复。
- 提供失败回退(Fallback)和优雅的服务降级机制
流程说明:
- 每次调用创建一个新的HystrixCommand,把依赖调用封装在run方法中。
- 执行execute/queue做同步或异步调用。
- 判断熔断器(circuit-breaker)是否打开,如果打开跳到步骤8,进行降级策略,如果关闭进入步骤。
- 判断线程池/队列/信号量是否跑满,如果跑满进入降级步骤8,否则继续后续步骤。
- 调用HystrixCommand的run方法。运行依赖逻辑 a: 依赖逻辑调用超时,进入步骤8。
- 判断逻辑是否调用成功 a: 返回成功调用结果 b: 调用出错,进入步骤8。
- 计算熔断器状态,所有的运行状态(成功, 失败,拒绝,超时)上报给熔断器,用于统计从而判断熔断器状态.
- getFallback降级逻辑。以下四种情况将触发getFallback调用:(1):run方法抛出非HystrixBadRequestException异常;(2):run方法调用超时;(3):熔断器开启拦截调用;(4):线程池/队列/信号量是否跑满。 a: 没有实现getFallback的Command将直接抛出异常 b: fallback降级逻辑调用成功直接返回 c: 降级逻辑调用失败抛出异常
- 返回执行成功结果。
Hystrix测试说明
Hystrix特性
- 请求熔断:当Hystrix Command请求后端服务失败数量超过一定比例(默认50%), 断路器会切换到开路状态(Open). 这时所有请求会直接失败而不会发送到后端服务. 断路器保持在开路状态一段时间后(默认5秒), 自动切换到半开路状态(HALF-OPEN).
- 这时会判断下一次请求的返回情况, 如果请求成功, 断路器切回闭路状态(CLOSED), 否则重新切换到开路状态(OPEN). Hystrix的断路器就像我们家庭电路中的保险丝, 一旦后端服务不可用, 断路器会直接切断请求链, 避免发送大量无效请求影响系统吞吐量, 并且断路器有自我检测并恢复的能力.
服务降级:Fallback相当于是降级操作. 对于查询操作, 我们可以实现一个fallback方法, 当请求后端服务出现异常的时候, 可以使用fallback方法返回的值. fallback方法的返回值一般是设置的默认值或者来自缓存.告知后面的请求服务不可用了,不要再来了。
依赖隔离(采用舱壁模式,Docker就是舱壁模式的一种):在Hystrix中, 主要通过线程池来实现资源隔离. 通常在使用的时候我们会根据调用的远程服务划分出多个线程池.比如说,一个服务调用两外两个服务,你如果调用两个服务都用一个线程池,那么如果一个服务卡在哪里,资源没被释放
- 后面的请求又来了,导致后面的请求都卡在哪里等待,导致你依赖的A服务把你卡在哪里,耗尽了资源,也导致了你另外一个B服务也不可用了。这时如果依赖隔离,某一个服务调用A B两个服务,如果这时我有100个线程可用,我给A服务分配50个,给B服务分配50个,这样就算A服务挂了,我的B服务依然可以用。
请求缓存:比如一个请求过来请求我userId=1的数据,你后面的请求也过来请求同样的数据,这时我不会继续走原来的那条请求链路了,而是把第一次请求缓存过了,把第一次的请求结果返回给后面的请求。
请求合并:我依赖于某一个服务,我要调用N次,比如说查数据库的时候,我发了N条请求发了N条SQL然后拿到一堆结果,这时候我们可以把多个请求合并成一个请求,发送一个查询多条数据的SQL的请求,这样我们只需查询一次数据库,提升了效率。
Sentinel和Hystrix对比
Sentinel | Hystrix | |
---|---|---|
隔离策略 | 基于并发数 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于响应时间或失败比率 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 即将发布 | 支持 |
调用链路信息 | 支持同步调用 | 不支持 |
限流 | 基于 QPS / 并发数,支持基于调用关系的限流 | 不支持 |
流量整形 | 支持慢启动、匀速器模式 | 不支持 |
系统负载保护 | 支持 | 不支持 |
实时监控 API | 各式各样 | 较为简单 |
控制台 | 开箱即用,可配置规则、查看秒级监控、机器发现等 | 不完善 |
常见框架的适配 | Servlet、Spring Cloud、Dubbo、gRPC 等 | Servlet、Spring Cloud Netflix |
引用资料
- https://www.cnblogs.com/softidea/p/6346727.html
- https://www.sohu.com/a/322823885_468627